Виды нейтрали в электрических сетях

Виды нейтралей электроустановок

Нейтраль – та часть электроустановки, которая имеет нулевой потенциал относительно физической земли или ее токопроводящих элементов. Трехфазные цепи могут иметь как технологическую, имеющую физическое соединение с токопроводящими частями, так и конструктивную, отдельную от них нейтраль. Это зависит от способа соединения выходных обмоток силовых трансформаторов.

В первом случае – звездой, во втором – треугольником. Поскольку в этом проводнике течет ток, что происходит в результате или аварии, или технологического перекоса фаз, выражение «режим работы нейтрали» имеет полное право на существование. О том, каким он может быть, и о способах подключения нейтральных проводников пойдет речь в этой статье.

Режимы заземления нейтрали

В экзаменационных билетах по электробезопасности для монтеров, работающих с установками напряжением до 1000 вольт, есть вопрос: «С какой нейтралью должны работать электрические сети напряжением 10 кВ?» Правильный ответ: «С изолированной». Однако существуют и другие режимы работы нейтралей в электроустановках:

  1. Эффективное заземление.
  2. Глухое заземление.

От их выбора зависит множество факторов:

  • Бесперебойность электроснабжения.
  • Безопасность обслуживающего персонала и электроустановок в случае замыкания одной из фаз на землю.
  • Величины токов в местах повреждений.
  • Схема построения релейной защиты.

Различные типы электрических сетей по-разному подключаются к нейтрали и реагируют на аварийные ситуации.

Высоковольтные магистральные электросети

К ним относятся все электросети, линейное (между фазными проводниками) напряжение в которых превышает 35 кВ. Выходные (статорные) обмотки промышленных электрогенераторов соединяют треугольником. Это связано с меньшим уровнем электрических потерь и отсутствием технологического перекоса фаз, что напрямую влияет на качество подаваемой потребителям электрической энергии.

При однофазном пробое на физическую землю – в случае обрыва провода или изменения диэлектрических свойств изоляторов на опорах, происходит падение линейного напряжения до нуля в аварийной фазе и рост в 1,7 раза в работоспособных.

Чтобы избежать электрического пробоя изоляторов рабочих фаз и не увеличивать их без того немалые размеры, в этом случае применяется способ подключения, называемый «эффективной нейтралью». Он заключается в том, что на промежуточных силовых подстанциях выходные обмотки трансформаторов, использующиеся для обеспечения их внутренних нужд (например, обогрева, сигнализации), включаются по схеме «звезда», общий провод которой наглухо соединяется с физической землей.

В результате напряжение в неповрежденных фазах растет не более, чем в 1,4 раза, а ток короткого замыкания ограничивается на уровне, который недостаточен для срабатывания реле защиты. Это позволяет не прерывать электроснабжение на время большее, чем то, что определено нормативами правил эксплуатации электроустановок для различных типов потребителей.

Магистральные электросети среднего напряжения

Электрическая сеть, линейное напряжение в которой от 6 до 35 кВ. Обмотки силовых трансформаторов соединяются звездой. Нейтраль изолированная, она не имеет физического контакта с землей. Это делается по трем причинам:

  1. Меньшие токи, что позволяет уменьшить размеры изоляторов – меньше вес, меньше нагрузка на опоры, возможна экономия при их производстве и монтаже.
  2. В сетях с изолированной нейтралью токи между фазами имеют емкостной характер, поэтому при пробое одной из них не возникает короткого замыкания. Ток как бы стекает с поврежденного проводника на землю и рассеивается ею.
  3. Нет необходимости тянуть четвертую линию, не имеющую функционального назначения.

В результате при аварии линейное напряжение растет в 1,7 раза, что для промежуточных силовых трансформаторов на линии не является критическим режимом. Электроснабжение продолжается по двум оставшимся линиям. Опасность представляет только оборванный провод в радиусе 10–30 метров – создается зона, где возможно возникновение так называемого шагового напряжения.

Однако при малом сопротивлении физической земли (в результате дождей, при прокладке электролинии по болотам) ток в поврежденном проводнике может достигнуть значения, достаточного для возникновения электрической дуги. В этом случае применяется так называемая компенсированная нейтраль.

Сущность компенсированной нейтрали заключается в том, что общий для всех обмоток провод все же имеет контакт с землей, но через сопротивление. Оно может иметь индуктивный или активный характер. В первом случае устройство называют дугогасящим реактором.

Ток, через него текущий, находится в противофазе с тем, который идет на физическую землю через поврежденный проводник. Они компенсируют друг друга, поэтому электрическая дуга не зажигается. Заземление нейтрали через резистор в нашей стране практически не применяется. А если и используется, то в качестве элемента, помогающего определить место повреждения – при его включении параллельно дугогасящему реактору происходит срабатывание релейной защиты на аварийном участке.

В нашей стране количество линий с компенсированной нейтралью равно 20% от числа всех электрических магистралей. А ее полную изоляцию используют еще только в Финляндии. Большинство европейских стран применяет подключение нейтрали через активное сопротивление большой величины.

Изолированная нейтраль также применяется в трехфазных сетях напряжением 0,4 кВ, которые прокладываются в шахтах, рудниках и на торфяных выработках. Везде, где пропуск электрического тока по физической земле может привести к поражению людей. А также в передвижных электроустановках при невозможности создания надежного контакта с заземлителем.

Низковольтные электрические сети

Все трехфазные электрические линии напряжением 0,4 кВ, от которых питаются конечные потребители, исполняются четырехпроводными. Это так называемые сети с глухозаземленной нейтралью. Выходные обмотки силовых линейных трансформаторов соединяются звездой, а их общий проводник – с физической землей. Делается это исходя из двух соображений:

  1. При однофазном замыкании на землю происходит мгновенное отключение всей линии, что необходимо для предотвращения поражения людей и животных электрическим током. Для этого в ней между фазными проводниками устанавливаются автоматы, реагирующие на сверхтоки (короткое замыкание) или дифференциальный ток.
  2. Кроме линейного напряжения в 380 (400) вольт, используется и фазное (между проводником и нейтралью), равное 220 вольт. При отсутствии надежного контакта с физической землей возможно возникновение технологического перекоса фаз, в результате которого у одного из потребителей на вводах будет 100–110 вольт, а у других – 290–300 вольт, что приводит к выходу из строя электрических приборов.

Если вы увидели на линии высокого напряжения оборванный провод, не подходите к нему близко, наверняка он находится под напряжением, поскольку в режиме изолированной нейтрали мгновенного отключения не происходит. И не относитесь к нейтральному проводнику четырехпроводной бытовой линии 0,4 кВ как к абсолютно безопасной железке. В случае неисправности или аварии по нему течет смертельно опасный ток.

Режимы работы нейтралей в электрических сетях

Производство, преобразование, транспортировка, распределение и потребление электрической энергии осуществляется по симметричной трехфазной системе проводов. Симметричность системы достигается равенством фазных и линейных напряжений, равномерной загрузкой всех фаз по току, одинаковым сдвигом фаз напряжений и токов.

Однако, в процессе эксплуатации неизбежны нарушения симметрии трехфазной системы, которые могут быть вызваны: обрывом провода, пробоем изоляции, перекрытием на посторонние предметы, непереключением фаз коммутационных аппаратов и пр.

В любом случае, несимметрия ведет к появлению токов обратной и нулевой последовательности, а также апериодической составляющей токов, которые могут быть опасны для сохранности оборудования. Поэтому несимметрия должна быть устранена как можно быстрее. На быстродействие релейной защиты при неполнофазных режимах значительное влияние имеет режим работы нейтрали сети.

Различают несколько режимов работы нейтрали: изолированная, глухозаземленная и эффективно заземленная. У каждого режима есть свои достоинства и недостатки. В сетях напряжением до 35 кВ включительно применяют изолированную нейтраль. Это означает, что средняя точка обмоток ВН трансформатора не соединена с землей.

Однофазное замыкание при такой системе электроснабжения на землю, не приводит к аварийному отключению поврежденной линии, так как ток замыкания на землю довольно незначителен, его величина обусловлена только емкостью двух неповрежденных фаз относительно земли. Ток однофазного замыкания на землю, в сетях до 35 кВ не способен поддерживать горение дуги.

Читайте также  Распределительные коробки электрические для скрытой проводки

При металлическом замыкании одной фазы («полная земля»), напряжение на двух других возрастает до линейного, но электроснабжение потребителей сохраняется по двум оставшимся фазам. Для сохранности трансформаторов при таких режимах работы, изоляцию его нейтрали выполняют на класс напряжения соответствующий изоляции линейных вводов.

При значительных емкостных токах линий до 35 кВ, применяют дугогасящие катушки, подключаемые к нейтрали трансформаторов. Гашение дуги обеспечивается индуктивностью катушки, которая компенсирует емкостный ток замыкания на землю.

Системой электроснабжения с эффективно заземленной нейтралью считается сеть, в которой заземлена часть нейтральных обмоток силовых трансформаторов. Однофазное короткое замыкание, в таких сетях, приводит к отключению поврежденного участка.

Ток короткого замыкания проходит от места повреждения до ближайших заземленных нейтралей трансформаторов по земле, распределяясь в соответствии с сопротивлением петли фаза – ноль. К трансформаторам, нейтрали которого не заземлены, ток короткого замыкания (в дальнейшем — КЗ) не протекает.

Учитывая тот факт, что на все виды повреждений в электрических сетях, 80 % повреждений приходится на однофазные КЗ, и тот факт, что близкие однофазные КЗ. имеют значительные величины токов, их влияние стараются ограничить.

Для этого часть нейтралей в сети оставляют незаземленной, увеличивая тем самым сопротивление петли замыкания и, ограничивая однофазные токи КЗ. Общий баланс заземленных и незаземленных нейтралей рассчитывается исходя из условий селективной работы устройств РЗА и ограничения токов КЗ.

Кроме того, важным условием при выборе точек заземления, является условие ограничения перенапряжения на нейтральных обмотках при несимметричных повреждениях. На силовом оборудовании класс изоляции нейтралей как правило, принимают на один класс напряжения ниже номинального напряжения обмоток ВН. Такая практика позволяет сэкономить на изоляции и габаритах оборудования, что дает высокий экономический эффект.

Однако с другой стороны, сниженный уровень изоляции нейтрали ведет к необходимости применения оборудования, которое бы ограничивало перенапряжения и токи в нулевом выводе. В качестве защиты от кратковременных перенапряжений могут применяться ограничители перенапряжений, для ограничения токов применяются токоограничивающие реакторы и конденсаторы.

В режиме глухого заземления работают сети с бытовым потребителем. При таком режиме работы нейтрали средняя точка обмоток НН трансформатора присоединяется к заземляющему контуру. В распределительных щитках жилых домов, корпус щитков также присоединяется к заземляющему контуру.

Так, в каждую квартиру или дом “заходит” два провода: фазный и нулевой – обеспечивая тем самым потребителя напряжением 220 В. При повреждении изоляции фазного провода, и прикосновении его к заземленным конструкциям, происходит немедленное отключение поврежденного участка сети. Бетонные стены и полы в многоквартирных домах, также имеют потенциал земли.

Ток КЗ имеет достаточные значения для срабатывания защитной коммутационной аппаратуры. В последнее время, для повышения уровня электробезопасности, помимо рабочего нуля, в жилые помещения заводят и проводник защитное заземление, которое подключается к корпусам электроприборов. Провод защитного заземления в щитке также присоединяется к заземленным конструкциям.

Следует отметить, что автотрансформаторы любого класса напряжения всегда работают с глухозаземленной нейтралью. Изоляция обмоток СН автотрансформатора выполнена, исходя из значения типовой мощности, которая меньше номинальной, а значит и уровень изоляции сниженный. В этом, собственно говоря, и состоит экономическая выгодность автотрансформатора перед трансформатором.

При неполнофазных коммутациях автотрансформаторов, в электромагнитной системе возникают опасные перенапряжения, которые могут быть ограничены глухим заземлением нулевого вывода.

Исходя из всего вышесказанного, можно сделать вывод, что режим работы нейтрали оказывает существенное влияние на надежность электроснабжения и режим работы энергосистемы в целом.

4 режима заземления нейтрали в сетях 6-35 кВ. Изолированную нейтраль объявим вне закона.

Способ заземления нейтрали сети является достаточно важной характеристикой.

«Новости ЭлектроТехники» № 5(23) 2003 г.

  • изолированная (незаземленная);
  • глухозаземленная (непосредственно присоединенная к заземляющему контуру);
  • заземленная через дугогасящий реактор;
  • заземленная через резистор (низкоомный или высокоомный).

Ниже в табл. 1 приведены способы заземления нейтрали, используемые в разных странах мира.
В России, согласно п.1.2.16 последней редакции ПУЭ, введенных в действие с 1 января 2003 г., «. работа электрических сетей напряжением 3-35 кВ может предусматриваться как с изолированной нейтралью, так и с нейтралью, заземленной через дугогасящий реактор или резистор». Таким образом, сейчас в сетях 6-35 кВ в России формально разрешены к применению все принятые в мировой практике способы заземления нейтрали, кроме глухого заземления. Отметим, что, несмотря на это, в России имеется опыт применения глухого заземления нейтрали в некоторых сетях 35 кВ (например, кабельная сеть 35 кВ электроснабжения г. Кронштадта).
Рассмотрим подробнее способы заземления нейтрали и дадим им общую характеристику.

В России режим заземления нейтрали через дугогасящий реактор применяется в основном в разветвленных кабельных сетях с большими емкостными токами. Кабельная изоляция в отличие от воздушной не является самовосстанавливающейся. То есть, однажды возникнув, повреждение не устранится, даже несмотря на практически полную компенсацию (отсутствие) тока в месте повреждения. Соответственно для кабельных сетей самоликвидация однофазных замыканий как положительное свойство режима заземления нейтрали через дугогасящий реактор не существует.
При дуговом характере однофазного замыкания скважность воздействия перенапряжений на изоляцию сети ниже, чем при изолированной нейтрали, но и здесь существует возможность возникновения многоместных повреждений. В последние десятилетия сети 6-10 кВ разрослись, а мощность компенсирующих устройств на подстанциях осталась той же, соответственно значительная доля сетей среднего напряжения сейчас работает с существенной недокомпенсацией. Это ведет к исчезновению всех положительных свойств сетей с компенсированной нейтралью. Отметим дополнительно, что дугогасящий реактор компенсирует только составляющую промышленной частоты тока однофазного замыкания. При наличии в сети источников высших гармоник последние могут содержаться в токе замыкания и в некоторых случаях даже усиливаться.
Применение режима с нейтралью, заземленной через дугогасящий реактор, в таких странах, как Финляндия, Швеция, отличается от российского. В этих странах он применяется в сетях с воздушными линиями, где его применение наиболее эффективно. Кроме того, в этих странах существует значительное сопротивление грунта, состоящего в основном из скальных пород, и режим заземления нейтрали через дугогасящий реактор позволяет обнаруживать однофазные замыкания через значительные переходные сопротивления 3-5 кОм. Применение режима заземления нейтрали через дугогасящий реактор в таких странах, как Германия, Австрия, Швейцария, носит в некоторой степени традиционный характер (выше уже говорилось онемецком инженере – изобретателе этого способа). Тем не менее и в этих странах этот режим заземления нейтрали применяется в основном в сетях с воздушными линиями. В сетях среднего напряжения зарубежных промышленных предприятий используется резистивное заземление нейтрали.

Нейтраль, заземленная через резистор (высокоомный или низкоомный)
Этот режим заземления используется в России очень редко, только в некоторых сетях собственных нужд блочных электростанций и сетях газоперекачивающих компрессорных станций. В то же время, если оценивать мировую практику, то резистивное заземление нейтрали – это наиболее широко применяемый способ (см. табл. 1).

Резистор в отечественных сетях 6-10 кВ может включаться так же, как и реактор, в нейтраль специального заземляющего трансформатора (рис. 3).
Возможны и другие варианты включения резистора, когда нейтраль заземляющего трансформатора наглухо присоединяется к контуру заземления, а резистор включается во вторичную обмотку, собранную в разомкнутый треугольник (рис. 4б), либо используется однообмоточный трансформатор (фильтр нулевой последовательности) с соединением обмотки ВН в зигзаг (рис. 4в).
Возможны два варианта реализации резистивного заземления нейтрали: высокоомный или низкоомный.
При высокоомном заземлении нейтрали резистор выбирается таким образом, чтобы ток, создаваемый им в месте однофазного повреждения, был равен или больше емкостного тока сети. Например, согласно нормам французской сетевой компании Electricite de France, ток, создаваемый резистором, должен быть в два раза больше емкостного тока сети. Это гарантирует отсутствие дуговых перенапряжений при однофазных замыканиях. Как правило, суммарный ток в месте повреждения при высокоомном заземлении нейтрали не превышает 10 А. То есть высокоомным заземлением нейтрали является такое заземление, которое позволяет не отключать возникшее однофазное замыкание немедленно. Соответственно высокоомное заземление нейтрали может применяться только в сетях с малыми собственными емкостными токами до 5-7 А. В сетях с большими емкостными токами допустимо применение только низкоомного заземления нейтрали.
При низкоомном заземлении нейтрали используется резистор, создающий ток в пределах 10-2000 А. Величина тока, создаваемого резистором, выбирается исходя из нескольких конкретных условий: стойкость опор ВЛ, оболочек и экранов кабелей к протеканию такого тока однофазного замыкания; наличие в сети высоковольтных электродвигателей и генераторов; чувствительность релейной защиты. В Electricite de France низкоомный резистор выбирается таким образом, чтобы ток однофазного замыкания в воздушных сетях не превышал 300 А, а в кабельных 1000 А. Согласно бельгийским нормам ток однофазного замыкания лимитируется величиной не более 500 А. При наличии в сети высоковольтных электродвигателей Electricite de France ограничивает ток в месте замыкания величиной 20 А (в случае необходимости допускается увеличение до 50 А). Эта норма связана с недопустимостью выплавления стали статора электродвигателя при однофазном замыкании. Похожие ограничения для сетей с высоковольтными электродвигателями были приняты при разработке устройств резистивного заземления нейтрали и в России. Например, такие заводы, как «Самарский Электрощит», «Московский Электрощит», выпускают ячейки заземления нейтрали, в которых используются резисторы, создающие активный ток 35-38 А (100 Ом для сетей 6 кВ и 150 Ом для сетей 10 кВ).
Некоторое отличие представляет практика низкоомного резистивного заземления нейтрали англоязычных стран. Так, в США типовым решением является применение резистора, создающего ток 400 А, в том числе и для сетей с высоковольтными электродвигателями.

  • увеличение тока в месте повреждения;
  • необходимость в отключении однофазных замыканий (только для низкоомного заземления);
  • ограничение на развитие сети (только для высокоомного заземления).
Читайте также  Лучший водонагреватель накопительный электрический 50 литров

Отсутствие дуговых перенапряжений при однофазных замыканиях и возможность организации селективной релейной защиты являются неоспоримыми преимуществами режима резистивного заземления нейтрали. Именно эти преимущества способствовали широкому распространению такого режима заземления нейтрали в разных странах.

Рис. 1. Схема двухтрансформаторной подстанции с изолированной нейтралью.

Рис. 2. Схема двухтрансформаторной подстанции с нейтралью, заземленной через дугогасящий реактор.

Рис. 3. Схема двухтрансформаторной подстанции с нейтралью, заземленной через резистор.

Рис. 4. Варианты включения резистора в нейтраль сети 6-10 кВ.

Рис. 5*. Североамериканский трансформатор потребителя.

Глухозаземленная нейтраль
Как уже было сказано, в отечественных сетях 6-35 кВ не используется. Этот режим заземления нейтрали широко распространен в США, Канаде, Австралии, Великобритании и связанных с ними странах. Он находит применение в четырехпроводных воздушных сетях среднего напряжения 4-25 кВ. В качестве примера на рис.5 приведен участок сети 13,8 кВ в США. Как видно из рис.5, воздушная линия на всем своем протяжении и ответвлениях снабжена четвертым нулевым проводом. Концепция построения сети заключается в том, чтобы максимально сократить протяженность низковольтных сетей напряжением 120 В. Каждый частный дом питается от собственного понижающего трансформатора 13,8/0,12 кВ, включенного на фаз-ное напряжение. На рис.5* показан такой однофазный трансформатор потребителя с заземленной средней точкой обмотки НН. Основная воздушная линия делится на участки секционирующими аппаратами – реклоузерами. Трансформаторы каждого отдельного потребителя и ответвления от линии защищаются предохранителями. На отпайках от линии используются отделители, обеспечивающие отключение в бестоковую паузу.
Этот способ заземления нейтрали не используется в сетях, содержащих высоковольтные электродвигатели. Токи однофазного замыкания в этом случае достигают нескольких килоампер, что недопустимо с позиций повреждения статора электродвигателя (выплавление стали при однофазном замыкании).

Рис. 5. Схема воздушной четырехпроводной распределительной сети 4-25 кВ США.

Применение глухого заземления нейтрали в сетях среднего напряжения в России вряд ли необходимо и вероятно в обозримом будущем. Все отечественные линии 6-35 кВ трехпроводные, а трансформаторы потребителей трехфазные, то есть сам подход к построению сети существенно отличается от зарубежного. Указанный выше случай глухого заземления нейтрали в кабельной сети 35 кВ, питающей г. Кронштадт, является исключением. Такое решение было сознательно принято проектным институтом в связи с тем, что ток однофазного замыкания в этой сети составляет около 600 А. Компенсация в данном случае малоэффективна, а надежных высоковольтных низкоомных резисторов на момент реализации решения в России не существовало.

Однако в любом случае выбор должен делаться между заземлением нейтрали через дугогасящий реактор, высокоомным или низкоомным заземлением, а режим изолированной нейтрали должен быть полностью исключен.

Сергей Титенков, ОАО «ПО Элтехника», Санкт-Петербург

Виды нейтралей в электрических сетях

Электрические сети, как известно, делятся в зависимости от класса напряжения – до и выше 1000В. Нейтраль – это общая точка обмоток у трансформаторов и генераторов, соединенных в звезду. Если же схема обмоток треугольник и необходим ноль, то можно вспомнить про схему «скользящий треугольник». Будем рассматривать только сети переменного тока.

Виды заземления нейтрали в сетях до 1кВ

В электрических сетях напряжением до 1000В принято использовать три системы заземления нейтрали – это TN, IT, TT. Каждая из букв несет определенный смысл, разберемся:

  • 1-ая буква описывает способ заземления нейтрали источника питания
    • T (terra) – нейтраль глухозаземленная
    • I (isolate) – нейтраль изолирована (и – изолирована, легко запомнить)
  • 2-ая буква показывает способ заземления открытых проводящих частей (ОПЧ) с землей
    • N (neutral) – ОПЧ заземлены через глухозаземленную нейтраль источника питания
    • T – ОПЧ заземлены независимо от источника питания

В свою очередь система TN делится на три подсистемы – TN-C, TN-S и TN-C-S. В рамках данной подсистемы третьи буквы (C — combine, S — separe) обозначают совмещение или разделение в одном проводе функций нулевого защитного (PE) и нулевого рабочего (N) проводника.

Рассмотрим теперь каждую систему более подробно.

Система заземления TN

В этой системе нейтраль глухозаземлена, а открытые проводящие части заземлены через эту глухозаземленную нейтраль. Глухозаземленная – это значит что нейтраль присоединена непосредственно к заземляющему устройству (болтом, сваркой) или через малое сопротивление (трансформатор тока).

В сетях до 1кВ глузозаземленная нейтраль используется для питания однофазных и трехфазных нагрузок.

Система заземления TT

Система TT предполагает, что нейтраль источника питания глухозаземлена, а ОПЧ оборудования заземлены заземляющим устройством электрически несвязанным с нейтралью источника. То есть защитный PE-проводник создается у самого потребителя, а не идет от источника питания.

Система заземления IT

В системе IT нейтраль генератора или трансформатора изолирована или заземлена через устройства, имеющие высокое сопротивление, а ОПЧ заземлены независимо. Эта система не рекомендуется для жилых зданий, используется там, где при первом замыкании на землю не требуется перерыв питания. Это могут быть электроустановки с повышенными требованиями надежности снабжения электроэнергией.

Виды заземления нейтрали в электросетях выше 1кВ

В сетях напряжением выше 1000В используется изолированная (незаземленная) нейтраль, эффективно заземленная нейтраль и резонансно-заземленная нейтраль. Глухозаземленная нейтраль используется только в сетях до 1кВ.

Сети с незаземленной (изолированной) нейтралью

Исторически первая система заземления. Нейтральная точка источника питания не присоединена к заземляющему устройству. Обмотки соединены в треугольник и выходит, что нулевая точка отсутствует. Применяется на напряжение 3-35кВ.

Сети с эффективно-заземленной нейтралью

Этот вид заземления используется в сетях напряжением выше 110кВ. Достоинство заключается в том, что при однофазных замыканиях на неповрежденных фазах напряжение относительно земли будет равно 0,8 междуфазного в нормальном режиме работы. В этой системе сам контур заземления выполняется с учетом протекания больших токов КЗ, что делает его сложным и дорогим.

Сети с нейтралью, заземленной через резистор или реактор

Применяется в сетях 3-35кВ. Используется для уменьшения величины токов КЗ. Исторически был вторым способом заземления нейтрали. Заземление через резистор используется во всем мире, через реактор – в странах бывшего союза.

Заземление через реактор – при отсутствии замыкания ток через реактор мал. Когда происходит замыкание фазы на землю, то через место повреждения течет емкостной ток КЗ и индуктивный ток реактора. Если их величина равна, то в месте замыкания отсутствует ток (явление резонанса).

Заземление через резистор бывает низкоомным и высокоомным. Разница в величине тока, создаваемым резистором при замыкании на землю. Высокоомное применяется в сетях с малыми емкостными токами, в этом случае замыкание можно не отключать немедленно. Низкоомное заземление наоборот используется при больших емкостных токах.

Выбор виды заземления нейтрали зависит от следующих факторов:

  • величина емкостного тока сети
  • допустимая величина однофазного замыкания
  • возможности отключения однофазного замыкания
  • вида и типа релейных защит
  • безопасности персонала
  • наличия резерва

Режимы работы нейтралей электрических сетей.

Дата добавления: 2013-12-23 ; просмотров: 33166 ; Нарушение авторских прав

Нейтралями (нейтральными точками) электроустановок называют общие точки фаз обмоток генераторов и трансформаторов, соединенных в звезду. Нейтраль может быть изолирована от земли, соединена с землей через реактивное сопротивление, а также непосредственно заземлена. Вид связи нейтралей с землей определяется безопасностью обслуживания электроустановок, надежностью электроснабжения потребителей и экономичностью.

Читайте также  На какую глубину закапывать кабель электрический

В зависимости от режима нейтрали электрические сети разделяют на четыре группы:

— сети с незаземленными (изолированными) нейтралями;

— сети с резонансно-заземленными (компенсированными) нейтралями;

— сети с эффективно-заземленными нейтралями;

— сети с глухозаземленными нейтралями.

а) Сети с изолированной нейтралью.

Они представляют собой трехпроводные сети переменного тока, в которых источник, линия электропередачи и приемники нормально не соединены с землей. Из-за несовершенства изоляции проводников происходит некоторая утечка токов на землю, что можно условно отобразить активными сопротивлениями изоляции каждой фазы , , (рис.1, а). Кроме того, проводники каждой фазы и земли можно рассматривать как обкладки конденсаторов, чему соответствуют емкостные сопротивления , , и емкости , , . Соответствующие сопротивления соединены звездой, нейтральная точка- земля. Проходящие по сопротивлениям на землю емкостные токи создают падения напряжения, т.е. возникают фазные напряжения проводов относительно земли: , ,

В нормальном режиме работы напряжения , , симметричны и равны фазному напряжению потребителя , а емкостные токи фаз , , также симметричны. При этом емкостной ток фазы

(1)

где — емкость фазы относительно земли. Геометрическая сумма емкостных токов равна 0 и поэтому ток через землю не протекает (рис.1, б):

В случае замыкания на землю одной из фаз сети, например фазы А, напряжение этой фазы относительно земли становится равным нулю (поверхность земли в точке повреждения принимает потенциал этой фазы), а напряжения неповрежденных фаз (В и С) относительно земли возрастают в раз, т.е. становятся равными линейным напряжениям (рис.2)

Соответственно емкостные токи этих фаз также возрастают в раз. Ток однофазного замыкания на землю в месте повреждения определяется по выражению

(2)

т.е. возрастает в 3 раза по сравнению с емкостным током в нормальном режиме

(3)

Согласно (3) ток зависит от напряжения сети, его частоты ω и емкости фаз относительно земли, которая зависит в основном от конструкции линии сети и их протяженности. Приближенно ток , А, можно определить по следующим формулам:

для ВЛ ,

для КЛ ,

где — линейные напряжения сети, кВ

l— длина электрически связанных участков сети данного напряжения, км.

Из векторной диаграммы видно, что при однофазных замыканиях на землю в сетях с изолированной нейтралью треугольник линейных напряжений не искажается, поэтому потребители, включенные на линейное напряжение, продолжают работать нормально. В тоже время необходимо отметить, что при работе сети с замкнутой на землю фазой становится более вероятным повреждение изоляции другой фазы и возникновение междуфазных КЗ через землю. В связи с этим в сетях с изолированной нейтралью обязательно предусматриваются специальные сигнальные устройства, извещающие персонал о возникновении однофазных замыканий на землю.

Согласно ПУЭ допустимая длительность работы с заземленной фазой в большинстве случаев не должна превышать 2 часов.

Вследствие того, что при однофазных замыканиях на землю фазные напряжения неповрежденных фаз возрастают до уровня линейных, изоляция в таких сетях должна быть рассчитана на линейные напряжения. Это ограничивает область использования такого режима работы нейтрали сетями напряжением не выше 35 кВ.

Работа сети с изолированной нейтралью применяется и в сетях с Uном≤1 кВ. Эти сети обеспечивают высокий уровень электробезопасности и их следует применять для передвижных установок, торфяных разработок и угольных шахт.

б) Сети с резонансно — заземленными нейтралями.

В случае если сеть с изолированной нейтралью имеет относительно большой емкостной ток замыкания на землю, а именно

при 6кВ Iк ≥ 30А,

при 10кВ Iк ≥ 20А,

при 20кВ Iк ≥ 15А,

при 35кВ Iк ≥ 10А,

то возможно появление опасных перемежающихся КЗ на землю. Для избежания этого согласно ПУЭ следует принимать меры по компенсации емкостного тока КЗ. Компенсация осуществляется с помощью регулируемых дугогасящих реакторов (катушек индуктивности), которые включаются в нейтрали трансформаторов и настраиваются почти в резонанс с емкостным сопротивлением сети.

В нормальном режиме ток через реактор практически равен нулю. При однофазном коротком замыкании реактор оказывается под фазным напряжением сети и через место замыкания на землю протекает наряду с емкостным током Iк также индуктивный ток реактора IL. Так как индуктивный и емкостной токи противоположны по фазе, то в месте замыкания на землю они компенсируют друг друга. Если IL=IC (резонанс), то через место замыкания на землю ток протекать не будет. Благодаря этому дуга в месте повреждения не возникает и устраняются связанные с нею опасные последствия. (рис.3)

в) Сети с эффективно — заземленными нейтралями.

В сетях 110 кВ и выше определяющим в выборе способа заземления нейтрали является фактор стоимости изоляции. Здесь применяется эффективное заземление нейтрали, при котором во время однофазного короткого замыкания (ОКЗ) напряжение на неповрежденных фазах относительно земли равно ≈0,8в нормальном режиме работы. Это основное достоинство такого способа заземления нейтрали (рис.4). Одним из недостатков является значительный ток ОКЗ, который при большом количестве заземленных нейтралей трансформаторов может превышать ток трехфазного КЗ. Для уменьшения токов ОКЗ применяют, если это возможно и эффективно, разземление некоторых нейтралей трансформаторов в сетях 110- 220 кВ.

г) Сети с глухозаземленными нейтралями.

На промышленных предприятиях широко применяют четырехпроводные трехфазные сети напряжением 380/220 В. На рис.5 показана схема такой сети с глухозаземленной нейтралью, когда вторичная обмотка соединена в звезду, а нейтральная точка непосредственно (глухо) соединена с заземляющим устройством.

Двигатели Д1 и Д2 подключены к фазам сети и получают питание при линейном напряжении U=380 В, а лампы Л подключены между фазными и нейтральным проводами и питаются фазным напряжением =220 В. При этом N-провод выполняет две функции: рабочего провода, к которому присоединяют однофазные приемники на 220 В, и провод зануления, т.е. к нему преднамеренно присоединяют металлические корпуса электроустановок, нормально не находящихся под напряжением. При наличии зануления пробой изоляции обмотки двигателя на корпус вызовет большой ток короткого замыкания и быстрое срабатывание защиты (автоматического выключателя QF) с отключением двигателя от сети. При отсутствии зануления корпуса двигателя Д2 повреждение изоляции его обмотки вызовет опасный потенциал на корпусе относительно земли.

При однофазном КЗ на землю напряжение на неповрежденных фазах относительно земли не повышаются и поэтому изоляция может быть рассчитана на фазное, а не на линейное напряжение.

Таким образом, в электрических сетях приняты следующие режимы нейтрали: сети 0.66- 35 кВ в зависимости от величины емкостного тока замыкания на землю работают либо с изолированной нейтралью, либо с резонансно-заземленной нейтралью; сети 380/220 В- с глухозаземленной нейтралью; сети 110 кВ и выше- с эффективно-заземленной нейтралью.